6.4 Nuclear and Particle Physics

Mark scheme - Nuclear and Particles Physics

Questio n		Answer/Indicative content	Mark s	Guidance
1		C	1	
		Total	1	
2		B	1	
		Total	1	
3		The decay constant is the probability of decay of a nucleus per unit time.	B1	Allow: the decay constant is the fraction of nuclei decaying per unit time. Allow: decay constant $=$ activity \div number of nuclei left in a sample.
		Total	1	
4		D	1	
		Total	1	
5		B	1	
		Total	1	
6		A	1	Examiner's Comments The majority of the candidates did get the correct answer A. A significant number of candidates opted for \mathbf{C}, confusing contrast material with medical tracers.
		Total	1	
7		B	1	
		Total	1	
8		C	1	
		Total	1	
9		B	1	
		Total	1	
10		A	1	
		Total	1	
1 1		B	1	
		Total	1	

6.4 Nuclear and Particle Physics

1 2	A	1	
	Total	1	
1 3	C	1	
	Total	1	
$\begin{aligned} & 1 \\ & 4 \end{aligned}$	C	1	
	Total	1	
$\begin{aligned} & 1 \\ & 5 \end{aligned}$	B	1	
	Total	1	
$\begin{aligned} & 1 \\ & 6 \end{aligned}$	D	1	
	Total	1	
$\begin{aligned} & 1 \\ & 7 \end{aligned}$	C	1	Examiner's Comments The correct response is \mathbf{C}. The responses are terms used frequently when studying data, but as around only one half of the candidates were able to get the correct response, it is clear that they are not fully understood. A little perplexingly, the most common incorrect response was \mathbf{B}, as it is difficult to see how this data could be considered linear. This does show how easy it is to assume that candidates are confident in their use of terminology, just because they are frequently used.
	Total	1	
$\begin{aligned} & 1 \\ & 8 \end{aligned}$	A	1	Examiner's Comments The correct response is \mathbf{A}. Around half of candidates were able to select the correct response. Although it would seem appropriate to write out some simple decay sequence, many candidates showed little working here. Some were able to get the correct response (probably through mental arithmetic) but incorrect responses may simply have been down to a lack of knowledge of nuclear changes, most likely in the beta decay. Incorrect responses were spread fairly evenly among the distractors, again suggesting that this topic was not well understood.
	Total	1	
1 9	D	1	
	Total	1	

2		The splitting of a (uranium) nucleus as a neutron is absorbed (into two fragment nuclei and neutrons).	B1	
		Total	1	
2 1		$\begin{aligned} \mathrm{d} \rightarrow \mathrm{u} & +{ }_{-1}^{0} \mathrm{e} \\ & +\bar{v}_{(\mathrm{e})} \end{aligned}$	B1 B1	Allow ${ }_{-1}^{0} \beta^{(-)}$for the electron
		Total	2	
2			B1 B1	Path is initially horizontal and further up the page than original Path ends at 30° to horizontal (angle must be labelled) in the direction shown Examiner's Comments The common errors here were: - not realising that, for the particle to be deflected through a smaller angle, it needed to be travelling further away from N - not labelling the final angle of 30° - not adding arrows to show the direction of travel - drawing a path that continued bending beyond the stated 30° (usually ending up parallel to the original path).
		Total	2	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$		number decaying in 1st second $=2000 \times$ $0.10=200$ number decaying in the 2 nd second $=1800$ $\times 0.10=180$ number left $=1800-180=$ 1620	C1 A1	
		Total	2	
$\begin{aligned} & 2 \\ & 4 \end{aligned}$	i	Too many $N /$ neutrons	B1	Allow 'neutron-rich' or (for stability) neutron changes to proton or (for stability) charge increases / Z changes to 8 Allow too few protons / 'proton-poor' Examiner's Comments This question required analysis of the information provided in Fig. 21. Most candidates scored a mark for either recognising that the isotope had too many neutrons or a neutron had to decay into a proton in order to provide stability.
	ii	Too few N / neutrons	B1	Allow 'neutron-poor' or (for stability) proton changes to neutron or (for stability) charge decreases / Z changes to 6

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
Allow too many protons / 'proton-rich' \\
Examiner's Comments \\
A range of answers were allowed in this question requiring analysis of Fig. 21. Most candidates scored a mark for either recognising that the isotope had too few neutrons or a proton had to decay into a neutron in order to provide stability.
\end{tabular} \\
\hline \& \& Total \& 2 \& \\
\hline \& a \& \begin{tabular}{l}
\({ }^{238}{ }_{92} \mathrm{U} \rightarrow{ }^{234}{ }_{90} \mathrm{Th}+\ldots .\). \\
\({ }_{2}^{4} \mathrm{He}\) or \({ }^{4} \mathrm{C}\)
\end{tabular} \& B1
B1 \& \begin{tabular}{l}
allow proton and / or nucleon number to the right of symbol allow \(\gamma\)-photon; zero for any other extra particle \\
Examiner's Comments \\
Most candidates made a good start to the paper writing a correct equation for the nuclear decay.
\end{tabular} \\
\hline \& b \& \[
\begin{aligned}
\& m v=(4.00-0.0665) \times 10^{-25} \times 2.40 \times 10^{5} \\
\& =9.44 \times 10^{-20} \\
\& v=9.44 \times 10^{-20} / 6.65 \times 10^{-27}=1.42 \times 10^{7}
\end{aligned}
\]
\[
\begin{aligned}
\& \text { k.e. }=1 / 2 \times 6.65 \times 10^{-27} \times\left(1.42 \times 10^{7}\right)^{2} \\
\& =6.70 \times 10^{-13}(\mathrm{~J}) \\
\& 6.70 \times 10^{-13} / 1.60 \times 10^{-13}=4.19(\mathrm{MeV})
\end{aligned}
\] \& C1
C1

A1

B1 \& | allow 0.07×10^{-25} for α-particle mass |
| :--- |
| max 3 if use 4.00 instead of 3.93 in momentum eq'n allow ratio of masses 234 and 4 or calculations using $234 u$ and 4 u |
| allow $\mathrm{p}^{2} / 2 \mathrm{~m}$ calculation for k.e. |
| accept 4.0 to 4.2 ; ecf (calculated value of k.e. in J)/e |
| N.B. the correct answer automatically gains all 4 marks |
| Examiner's Comments |
| One mark in this question was reserved for converting units from joule into mega electronvolt. This was the only mark awarded to half of the candidates. Few recognised this to be an isolated system, applying the conservation of momentum to solve the problem. Few appeared to realise that the mass of an alpha particle is given in the Data, Formulae, and Relationships Booklet, calculating it instead by summing the masses of neutrons and protons. The most common incorrect approach was to use the formula $E=m c^{2}$ or to equate the kinetic energies of the thorium nucleus and alpha particle. |

\hline \& c \& | $\begin{aligned} & \Delta A=32=4 n_{\alpha} \text { so } n_{\alpha}=8 \\ & \Delta Z=10=2 n_{\alpha}-n_{\beta} \text { so } n_{\beta}=6 \end{aligned}$ |
| :--- |
| argument / reasoning given for both n_{α} and n_{β} | \& | B1 |
| :--- |
| B1 |
| B1 | \& | allow 8 (decays), i.e no mention of a particles |
| :--- |
| allow $10-16=-6$; NOT $14-8=6$; must state $\beta(-)$ particles e.g. change in mass number caused by α decay,change in proton number combination of α and β |
| Examiner's Comments |
| A significant number had no idea where to start and left the page blank. Of the rest most managed to decide on 8 alpha particles. A minority worked initially with the proton number rather than the nucleon number incorrectly choosing 5 . The explanations about the choice of 6 beta particles were often just restricted to equating the numbers correctly rather than giving any description of the transformation of neutrons into protons. |

\hline \& \& Total \& 9 \&

\hline
\end{tabular}

(

				from (a) and the equation $\lambda=h c I E$ to calculate the maximum wavelength. There was no credit for this incorrect approach.
		Total	7	
$\begin{aligned} & 2 \\ & 7 \end{aligned}$	a	Any two from: It acts between quarks / nucleons / hadrons 'Short-range’ force Repulsive below (about) 0.5 fm Attractive up to (about) 3 fm	B1×2	Allow any correctly named particle Allow any value between 0.5 fm and 5 fm Examiner's Comment Most candidates scored two marks and knew a great deal about the strong nuclear force.
	i	proton $=\mathrm{uud}$ or \quad neutron $=\mathrm{udd}$	B1	Examiner's Comment The modal score here was one mark. The answers were brief with either proton as uud or the neutron as udd. The up \uparrow and down \downarrow arrows were allowed as acceptable notation for the up and down quarks respectively.
		$\mathrm{d} \rightarrow \mathrm{u}+{ }_{-1}^{0} \mathrm{e}$ $+\bar{v}_{(e)}$	M1	Allow the equation expressed in words Allow udd \rightarrow uud $+{ }_{-1}^{0} e$ Allow ${ }_{-1}^{0} \beta$ Not e^{-}for electron Allow this mark if electron written as e^{-}or p^{-} Examiner's Comment A variety of answers for the decay equations were accepted with most candidates picking up marks. No credit could be given for showing the decay of a neutron into a proton because of the absence of the quarks. Some of missed opportunities were: - Representing the electron as e^{-}rather than ${ }_{-1}^{0} \mathrm{e}$. - Confusing the positron and the electron. - Assuming the decay was $u \rightarrow d$ rather than $d \rightarrow u$.
	c	mass (of nucleus) $\propto A$ volume (of nucleus) \propto radius $^{3} \propto A$ and clears steps using $p=m / V$ to show density is (about) the same	B1 B1	Allow mass $=$ Am, mass $=A u$, etc. Allow r or R for radius Allow any sensible constant in front of the r^{3} Examiner's Comment This proved challenging for most candidates with answers lacking clarity. Some candidates secured a mark for suggesting the massnucleus $\propto A$. Only the very top-end candidates managed to show how the density equation and volume $\propto A$ led to the expected conclusion. Too many scripts had vague answers such as 'neutrons and protons are the same, so their density is the same' and 'protons and neutrons have negligible mass so density is unaffected'.
		Total	7	

2	i	Material \mathbf{X} because of the shorter half-life	B1	Must be comparative Allow explanation in terms of decay constant Examiner's Comments This question expects the candidates to appreciate that the activity is related to the half-life. The majority of candidates were able to successfully answer this question although a number did not make it comparative and simply said that X had a short half-life.
	ii	(Alpha particles are stopped by the glass but) the beta-particles are not (AW)	B1	Allow symbols Examiner's Comments Not many candidates recognised that the penetrating powers of the radiations through glass were required for the response; most referred to the ionising (and so harmful to health) properties of both sources.
		Total	2	
2		Downward curved path Same x	B1 B1	Ignore any line outside of the plates Expect same x by eye Examiner's Comments Nearly all candidates appreciated that the path should be downwards, but many did not take the care needed for it to be clear that the deflection at the end of the plate should be the same. Some candidates drew an ' x ' on their sketch, which was helpful in determining if the intention to draw it the same had been made.
		Total	2	
3 0		Control rods: absorb the neutrons (without further fission) Moderator: Slow down the neutrons / decrease KE of neutrons	B1 B1	Not collide for absorb Examiner's Comments For this question, the candidates need to explain the role of these components in terms of their interactions with neutrons and those who did not mention neutrons at all in their responses could not score any marks. Many candidates went beyond what was required and explained what effect this has on the reactor, such as controlling the rate of reaction. In general, this question was not answered well. Misconception Many candidates gave vague statements regarding the function of these components rather than an explanation.
		Total	2	

			$\begin{aligned} & (\text { energy }=) 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} \\ & (\text { energy }=) 2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} / \\ & 1.60 \times 10^{-19} \\ & \lg 1.0(2) \times 10^{6}=6(\text { as on graph }) \end{aligned}$ OR $($ energy $=) 1.0 \times 10^{6}(\mathrm{eV})$ or $\lg 1.0 \times 10^{6}=6$ (from graph) (energy $=$) $1.6 \times 10^{-13} \mathrm{~J}$ and evidence of $m c^{2}$ $2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} \approx 1.6 \times 10^{-13}$	$\begin{array}{\|ll} \hline \text { B1 } & \text { 11 } \\ \text { B1 } & \text { B1 } \\ \text { B1 } & \text { B1 } \end{array}$	Note this is $8.2 \times 10^{-14}(\mathrm{~J})$ Note this is $1.0(2) \times 10^{6} \mathrm{eV}$ Note this can be shown in a variety of ways
			Total	3	
			superscripts 1,60,0 subscripts $0,28,-1$ $\bar{v}(\mathrm{e}) \cdot($ nu-bar $)$	$\begin{array}{\|c} \mathrm{B} 1 \mathrm{~B} 1 \\ \mathrm{~B} 1 \end{array}$	recognisable correct symbol required If superscripts and subscripts included, both must be 0 Examiner's Comments The correct symbol for the 'one other particle' in this question was $\left(\bar{\nu}^{\prime},\right)(\bar{\nu}$ _e $)$ or $\left(\left(0^{\wedge} 0\right) \bar{\nu}\right)$, all being acceptable. Exemplar 2 Exemplar 2 illustrates the two most common problems that were encountered in this response. AfL Centres should give candidates plenty of practice in balancing equations that involve beta minus decay.
			Total	3	
			$\begin{aligned} & \frac{h c}{\lambda}=2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} \\ & \lambda=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{2 \times 9.11 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2}} \\ & \lambda=1.2 \times 10^{-12}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow 2 marks for $2.4 \times 10^{-12}(\mathrm{~m})$; factor of 2 omitted in the first line.
			Total	3	

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{3} \& \& \multirow[t]{3}{*}{\begin{tabular}{l}
energy of two photons \(=2 \times m c^{2}\) or \(2 \times \frac{h c}{\lambda}=2 \times m\)
\[
\lambda=\frac{h}{m c}=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^{8}}
\] \\
wavelength \(=2.4 \times 10^{-12}(\mathrm{~m})\)
\end{tabular}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
C1 \\
C1 \\
A1
\end{tabular}} \& \\
\hline \& \& \& \& Correct use of \(\frac{h c}{\lambda}=m c^{2}\) \\
\hline \& \& \& \& \\
\hline \& \& Total \& 3 \& \\
\hline \& i \& alpha-particle / \({ }^{4} \mathrm{He} /{ }_{2}^{4} \alpha\) \& B1 \& \\
\hline \& ii \& nucleon number for \(\mathrm{Bi}=209\) antineutrino \(/{ }^{(0)}(0) \bar{v}_{(e)}\) \& B1
B1 \& Note: Do not allow incorrect subscript and superscript \\
\hline \& b \& \begin{tabular}{l}
Aluminium (sheet placed between source and detector) \\
The count (rate) reduces \\
or \\
Magnetic / electric field used \\
Electrons identified from correct deflection / motion in field
\end{tabular} \& M1
A1

M1

A1 \& | Allow count (rate) drop to background / zero |
| :--- |
| Allow 2 marks for 'the range in air is a few m' |
| Examiner's Comments |
| This turned out to be a low-scoring question from candidates across the ability spectrum. Only a quarter of the candidates gained 2 marks for identifying aluminium as the absorber for the beta-minus radiation (electrons) and providing adequate description in terms of reduction in the count-rate. A small number of candidates opted for charged parallel plates and identified the electrons curving towards the positive plate. There were some baffling descriptions involving pointing the source at 'wires and measuring the current'. Fluorescent screens and cloud chambers were not allowed as acceptable answers because both can be used to detect the presence of gamma-photons and alpha-particles. |

\hline \& \& $$
\begin{aligned}
& (\lambda=) \ln 2 / 3.3\left(h^{-1}\right) \text { or }(\lambda=) 0.21\left(h^{-1}\right) \\
& \left(A_{0}=\right) 12 \times 10^{3} / e^{-(0.21 \times 7.0)} \text { or }\left(A_{0}=\right) 5.219 \times \\
& 10^{4}(\mathrm{~Bq}) \\
& \left(N_{0}=5.219 \times 10^{4} / 5.835 \times 10^{-5}\right.
\end{aligned}
$$ \& C1

C1

C1 \& | Allow credit for alternative methods |
| :--- |
| Note this is the same as $12 \times 10^{3} \div(0.5)^{7.0 / 3.3}$ |
| Note 9.0×10^{8} can score full marks if numbers are rounded |

\hline
\end{tabular}

				Examiner's Comment Most candidates scored two or more marks for their description of the PET scanner. Most candidates knew that the annihilation of positrons and electrons was central to the scanning technique. A small number of candidates either confused the PET scanning with CAT scanning or assumed that the gamma detectors were monitoring the emission of positrons from the patient.
	b	$\begin{aligned} & \lambda=\ln 2 / 110 \quad \text { or } 6.3 \times 10^{-3}\left(\mathrm{~min}^{-1}\right) \\ & 0.30=\mathrm{e}^{-6.3 \times 10^{3} t} \\ & t=\frac{\ln (0.30)}{-6.3 \times 10^{-3}} \\ & t=190 \text { (minutes) } \end{aligned}$	C1 C1 A1	Allow $1.05 \times 10^{-4}\left(\mathrm{~s}^{-1}\right)$ This is the same as $0.30=e^{-1.05 \times 10^{-4} t}$ Note: This mark is for a In expression (any subject) Allow 2 marks for $1.15 \times 10^{4}(\mathrm{~s})$ as the final answer Examiner's Comment This was not an easy question. It required knowledge and understanding of activity, decay constant and natural logs. It is good to report that most of the candidates produced immaculate answers. The common mistakes made were: - Using either $\ln (1 / 3)$ or $\ln (0.70)$ rather than $\ln (0.30)$ in the calculations. - Assuming the decay was linear rather than exponential.
	c	Any sensible suggestion, e.g. 'post-code' lottery, some patients may not get the treatment because of where they live, longer waiting lists, etc.	B1	Examiner's Comment Almost all candidates gave a plausible suggestion in this last question in the paper. It is good to report that physicists are mindful of the impact of science on society.
		Total	8	
		$\begin{aligned} & Q=79 \mathrm{e} \text { and } q=2 \mathrm{e} \\ & F=\left(1 / 4 \pi \varepsilon_{0}\right) Q q / r^{2} \\ & =79 \times 2 \times\left(1.6 \times 10^{-19}\right)^{2} /\left[4 \pi \times 8.85 \times 10^{-12}\right. \\ & \left.\times\left(6.8 \times 10^{-14}\right)^{2}\right] \\ & =7.9(\mathrm{~N}) \end{aligned}$	C1 C1 C1 A1	Apply ECF for wrong charge(s), e.g. Q and $/$ or $q=e$, or $Q=$ 79 and / or $q=2$, etc Examiner's Comments The most common error here was to use incorrect values for the charges on the two ions. Even so, most candidates were able to gain most of the marks with ECF.
		Total	4	
4 0		The moderator slows down the fast-moving neutrons. The neutrons lose significant amount of their kinetic energy when colliding with moderator	B1 B1	

		nuclei. or The moderator does not absorb the neutrons. The control rods absorb the neutrons. The rate of fission reactions is less / reduced.	B1 B1	
		Total	4	
4 1	i	Electron and (electron) antineutrino	B1	Allow beta-minus (particle) $/ \beta^{-} ; \overline{U_{(e)}}$ Allow anti electron neutrino Examiner's Comments The majority of the candidates scored a mark for electron and antineutrino as the two leptons. The most common incorrect answers were neutrino, positron, proton and neutron. The pairing of electron and positron also appeared on some scripts.
	ii	$\begin{aligned} & \lambda=\ln 2 / 49 \text { or } \lambda=0.0141\left(\text { billion } \mathrm{y}^{-1}\right) \\ & 0.95=\mathrm{e}^{-0.0141 t} \text { or } 0.95=\mathrm{e}^{-4.48 \times 10-19 t} \\ & \text { (age }=-\ln (0.95) / 0.0141) \\ & \text { age }=3.6 \text { (billion years) } \end{aligned}$	C1	Allow $\frac{\ln 2}{49 \times 10^{9} \times 3.16 \times 10^{7}} \quad$ or $4.48 \times 10^{-19}\left(\mathrm{~s}^{-1}\right)$ Allow both C 1 marks for $\ln (0.95)=\ln (0.5) \times t / 49$ Allow $0.05 / 0.0141 \approx \mathrm{t}$ (this gives 3.5.. for the final mark) Note age in seconds is $1.15 \times 10^{17}(\mathrm{~s})$; this will score 2 marks Examiner's Comments Many of the top-half candidates demonstrated how the age of the Earth could be calculated in just a few lines. The use of natural logs (In) was faultless. Most candidates calculated the decay constant and then used the equation $0.95=\mathrm{e}^{-\lambda t}$, or its equivalent $\ln 0.95=-\lambda t$, to calculate the age t. Candidates are reminded not to round numbers in long calculations - it is good practice to keep all the digits on your calculator. A significant number of candidates rounded the decay constant to 2 SF (0.014 billion y^{-1}), and this gave an answer of 3.7 billion years. The correct answer, without rounding $\ln 2 / 49$, was 3.6 billion years. On this occasion, examiners allowed the 3.7 billion years answer. The command term 'estimate' in the question made a small number of candidates to use the equation $\frac{\Delta N}{\Delta t} \approx-\lambda t$. This was allowed, and it gave an estimated age of 3.5 billion years.

			The majority of the a pha particles pass straig turnough which suggests that the majority of the atom is empty paci. The fact that some Skewere scattered suggested there was a nocino with a position chavge re pelling the positive alph particles away fromit. It would be difficult to provide an improved answer. However, it is worth pointing out that the same ideas can also be presented in bullet-point form - three distinct points for the 3 available marks.
	Total	4	
4	Electrons and quarks identified as fundamental particles There are 6 electrons, 6 protons and 8 neutrons Composition of proton $\rightarrow \mathrm{u} u \mathrm{~d}$ Composition of neutron $\rightarrow \mathrm{udd}$	B1 B1	Allow e for electron, p for proton, and n for neutron throughout Allow 6 electrons, 20 u and 22 d Do not award this mark if electron has quark-composition Allow '2 up and 1 down' Allow '2 down and 1 up'
	Total	4	
4 5	i 1	B1	Examiner's Comments This question was correctly answered by the vast majority of candidates.
	Either: mass of nucleus $14.000 \times 1.66 \times 10^{-}$ 27 $\left(=2.324 \times 10^{-26} \mathrm{~kg}\right)$ $\begin{aligned} & \text { Or: mass of nucleons }=8 \times 1.675 \times 10^{-27}+6 \\ & \times 1.673 \times 10^{-27} \\ & \left(=2.3438 \times 10^{-26} \mathrm{~kg}\right) \\ & (\Delta \mathrm{m}=) 2.3438 \times 10-26-2.324 \times 10^{-26}= \\ & \left(1.98 \times 10^{-28} \mathrm{~kg}\right) \\ & (\Delta E=) 1.98 \times 10^{-28} \times\left(3.00 \times 10^{8}\right)^{2} \end{aligned}$ (BE per nucleon =) $1.782 \times 10^{-11} / 14$ binding energy per nucleon $=1.27 \times 10^{-12}(\mathrm{~J}$ per nucleon)	C1 C1 C1 A1	$\Delta m=1.9262 \times 10^{-28} \mathrm{~kg}$ Ignore sign throughout $\Delta E=1.782 \times 10^{-11} \mathrm{~J}$ Allow for any mass difference $\times\left(3.00 \times 10^{8}\right)^{2}$ Note A mark for correct answer to 3sf only Examiner's Comments This final calculation required some careful structure and several stages. An encouraging number were able to work through the solution to its conclusion. Some rounded intermediate calculations too early and so lost the final 3 significant figures mark. Several candidates also missed the division by the nucleon number, either as a slip or perhaps they did not appreciate that this was what was required. Even the weakest candidates realised the need to apply $E=m c^{2}$, but would only gain credit here if they had calculated a mass difference. Some candidates also miscalculated the number

6.4 Nuclear and Particle Physics

	ii	Hence energy $42 / 5=8.2$ times higher second method 235 g of U and 4 g of H / He contain 1 mole of atoms	B1	
	ii		$\begin{aligned} & \text { or } \\ & \text { B1 } \end{aligned}$	
	ii	there are 4.26 moles of U and 250 moles of He	B1	
	ii	releases in fusion ratio of energies is only 7 fold in favour of U	B1	
	ii	therefore 58/7 times as much energy released by 1 kg of H	B1	
	ii	similar alternative argument, e.g. For U each nucleon 'provides' 0.85 MeV	B	
	ii	For H each nucleon 'provides' 7 MeV	B1	
	ii	(Approx) same number of nucleons per kg of U or H so 8.2 times as much energy from H	B1	
	ii		B1	
		Total	5	
$\begin{aligned} & 4 \\ & 9 \end{aligned}$	a	$\begin{aligned} & I=I_{0} / r^{2} \text { or } I=k r^{-2} \\ & (k=20) \text { so } I=20 /(0.25)^{2}=20 \times 16=320 \end{aligned}$	B1 B1	allow inverse square law statement
	ii	640	B1	
	iii	$\begin{aligned} & 640=20 / r^{2} \\ & \text { so } r=\sqrt{ }(20 / 640)=0.18(m) \end{aligned}$	C1 A1	ecf(ii)1
	iii			accept 0.177 (m)
		Level 3 (5-6 marks) Clear set up and description of chosen experiment(s) and clear interpretation of observations There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Limited set up and description of chosen experiment and limited interpretation of observations There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: 1. range/penetration/absorption/deflection experiment suggested 2. suitable arrangement and choice of apparatus e.g. on diagram; allow GM tube as detector for all particles 3. description of range/penetration/absorption experiment: a. a place detector very close/ 2 cm from source; measure count rate, use paper screen or move back to 10 cm or more, measure count rate, interpret result; contrast to background count level and/or other emissions from same source b. β place detector e.g. 10 cm from source measure count rate, add thin sheets of Al until count drops to very low or almost constant value e.g. Y present; interpret result; c. γ place detector e.g. 10 cm from source measure count rate, add thin sheets of Pb until count drops to very low/background level; interpret result

		Level 1 (1-2 marks) Very basic description of chosen experiment and limited interpretation of observations The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		4. deflection experiment: needs vacuum for α experiment;source for radiation passes through region of E - or B - field; deflection or not of particles detected by detector to distinguish emissions; detail of directions; amount of curvature determines energy of emission; and nature of particle
		Total	11	
50	i	2	B1	
	ii	Zero	B1	
		$\begin{aligned} & \Delta m=236.053-235.840=0.213 \mathrm{u} \\ & \Delta E=\left[0.213 \times 1.661 \times 10^{-27}\right] \times\left(3.0 \times 10^{8}\right)^{2}= \\ & 3.184 \times 10^{-11}(\mathrm{~J}) \\ & \text { number of reactions per second }=10^{9} / 3.184 \\ & \times 10^{-11} \\ & \text { number of reactions per second }=3.1 \times 10^{19} \\ & \left(\mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 C1 A1	
		Total	6	
		* Level 3 (5-6 marks) All of B correct. One of S and one of D stated. C fully described. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) B partially given. S and D given but one not clear. C lacks detail. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) B poor and incomplete. Only S or D given. C not mentioned or very inadequate.	B1	basic description (B) 1. fission: neutron is absorbed by the nucleus causing it to split into two (major) fragments and several / two / three neutrons 2. fusion: two light nuclei (moving rapidly enough) overcome the Coulomb repulsion between them fuse. similarity (S) 1. release of energy 2. total (rest) mass decrease 3. 'increase' in binding energy 4. conservation of charge / mass-energy. difference (D) 1. cold, hot 2. heavy, light nuclei 3. large (200 MeV), small (30 MeV) energy release per reaction. conditions (C) 1. fission rate can be varied / controlled by absorbing and or slowing released neutrons in reactor where chain reaction is occurring 2. fusion needs a very hot and sufficiently dense and plentiful

		The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		plasma for random fusion collisions to occur, e.g. inside Sun / star.
		Total	6	
		Level 3 (5-6 marks) Correct explanation Correct determination of λ and half-life Correct determination of uncertainty (Maximum 6 marks) Any point omitted or incorrect (5 marks). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Mostly correct explanation Mostly correct determination of λ and half-life Some attempt of determining uncertainty (Maximum 4 marks) Any point omitted or incorrect (3 marks). There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Basic explanation Some attempt to determine λ or half-life No attempt at uncertainty. (Maximum 2 marks) The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	$\begin{gathered} \text { B1 } \mathrm{x} \\ 6 \end{gathered}$	Explanation 1. $A=A_{0} \mathrm{e}^{-\lambda t}$ 2. $\ln A=\ln A_{0}-\lambda t$ 3. A graph of $\ln A$ against t will be a straight line with gradient (-) 入 4. half-life $=\ln 2 / \lambda$ Determination 1. Line of best fit drawn 2. Gradient determined using a large triangle 3. decay constant in the range 0.5 to $0.7 \mathrm{~min}^{-1}$ 4. half-life in the range 1.0 to 1.4 min Uncertainty 1. Worst line of fit drawn 2. Correct attempt to determine uncertainty
		Total	6	
		Level 3 (5-6 marks) Clear expansion of three statements There is a well-developed line of reasoning which is clear and logically structured. The information presented is clear, relevant and	$\begin{gathered} \text { B1 x } \\ 6 \end{gathered}$	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include: statement 1

substantiated.

Level 2 (3-4 marks)

Clear expansion of two statements or

Limited attempt at all three

There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.

Level 1 (1-2 marks)

Limited attempt at one or two statements

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

- fusion reactions are occurring
- which change H into He
- and mass is lost which releases energy
- energy released $=c^{2} \Delta m$
- Δm per second $=$ luminosity $/ c^{2}$

statement 2

- average k.e. of each proton is ${ }^{\frac{3}{2}} k T$
- high T means protons are travelling at high speed
- so fast enough to overcome repulsive forces
- and get close enough to fuse
- p.e. $=\mathrm{e}^{2} / 4 \pi \varepsilon_{0}$ r so T must be high enough for ${ }_{2}^{3} k T>\mathrm{e}^{2 / 4} / 4 \varepsilon_{0} r$
- r is approximately $3 f m$

statement 3

- k.e. $\propto T$ so average energy at $10^{7} \mathrm{~K}$ is only one thousandth of the average energy at $10^{10} \mathrm{~K}$ when protons might fuse
- but M-B distribution applies so at the high energy end there will be a few p with enough energy
- quantum tunnelling across potential barrier is possible
- small probability of many favourable collisions to boost energy of p
- 4 p must fuse to produce He ; it is complicated process making probability of fusion much less
- number of p in Sun is so huge that, even with such a small probability, $4 \times 10^{9} \mathrm{~kg}$ of p still interact s^{-1}
- a larger probability means lifetime of the Sun would be shorter

Examiner's Comments

This was one of the two LoR questions. It required understanding of fusion, mass-energy equivalence, the Maxwell-Boltzmann distribution, and the relationship between mean kinetic energy and temperature for particles in an ideal gas.

Responses to the following questions were being sought:

1. Why is the Sun losing mass?
2. Why is an extremely high temperature needed for fusion in
stars?
Why does fusion occur in the Sun even though its
3. temperature is 1,000 times less than that required by theory?

	Level 2 (3-4 marks) Some description and some analysis for $r \propto$ $A^{1 / 3}$ or some calculation of mean density OR Some description and clear analysis for $r \propto$ $A^{1 / 3}$ OR Some description and correct calculation of mean density OR Clear analysis for $r \propto A^{1 / 3}$ and correct calculation of mean density There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Some description OR Limited analysis for $r \propto A^{1 / 3}$ OR Limited calculation of mean density There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		- The density is constant for most of d - Nucleus with bigger A is larger (d / volume / mass) Analysis for $r \propto A^{1 / 3}$ - $r \approx 3.6\left(\times 10^{-15} \mathrm{~m}\right)$ for Al-27 $/ r \approx 5.5\left(\times 10^{-15} \mathrm{~m}\right)$ for Mo-96 / $r \approx 7.0\left(\times 10^{-15} \mathrm{~m}\right)$ for $\mathrm{Hg}-200$ - $r / A^{1 / 3}=$ constant (or equivalent) - Evidence for $r \propto A^{1 / 3}$ with at least 2 nuclei (Note: 3.6 $\left(\times 10^{-15}\right) / 27^{1 / 3} \approx 5.5\left(\times 10^{-15}\right) / 96^{1 / 3} \approx 7.0\left(\times 10^{-15}\right) / 200^{1 / 3}$ $\approx 1.2\left(\times 10^{-15}\right)$ or - $r^{3} / \mathrm{A}=$ constant (or equivalent) - Evidence for $r^{3} \propto A$ with at least 2 nuclei (Note. 3.6 ${ }^{3}$ $\left(\times 10^{-45}\right) / 27 \approx 5.5^{3}\left(\times 10^{-45}\right) / 96 \approx 7.0^{3}\left(\times 10^{-45}\right) / 200 \approx$ $1.7\left(\times 10^{-45}\right)$ Calculation for density - $\rho=M / V$ - $\rho=A m_{n} \div \frac{4}{3} \pi r^{3}$ or $\rho \approx A m n \div$ diameter 3 - $m_{\mathrm{n}} \approx 1.7 \times 10^{-27}(\mathrm{~kg}) ; \rho=2.3 \times 10^{-17}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ for at least one of the nuclei given in the figure or table
	Total	6	
6	$\begin{aligned} & \boldsymbol{A}=470 / 8.8 \times 10^{-13}=5.3 \times 10^{14}(\mathrm{~Bq}) \\ & \lambda=\ln 2 /\left(88 \times 3.16 \times 10^{7}\right)\left(=2.5 \times 10^{-10} \mathrm{~s}^{-1}\right) \\ & (A=\lambda N) ; N\left(=5.3 \times 10^{14} / 2.5 \times 10^{-10}\right)=2.1 \mathrm{x} \\ & 10^{24} \end{aligned}$	C1 C1 A1	Mark is for correct calculation of A (in Bq or decays per s) Mark is for correct working to give λ in s^{-1}
	$\begin{aligned} & P=P_{o} \exp (-\lambda t) \\ & P=470 \exp (-\ln 2 \times 100 / 88) \\ & P=210(\mathrm{~W}) \end{aligned}$	C1 C1 A1	Allow formula in terms of N or A Allow calculation in terms of N or A; allow ECF for N or A
	Total	6	
5 7	Level 3 (5-6 marks) Clear description and clear calculations of energy per kg There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and	B1×6	Indicative scientific points may include: Description - Energy is produced in both reactions - More energy produced (per reaction) in fission

	substantiated. Level 2 (3-4 marks) Clear description OR Clear calculations of energy per kg OR Some description and some calculations There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description OR Limited calculations There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		- The (total) binding energy of 'products' is greater - In fusion, nuclei repel (each other) - Fusion requires high temperatures / high KE - Fission reactions are triggered by (slow-)neutrons - Chain reaction possible in fission Calculations - 1 kg of uranium has 4.26 mols $/ 2.56 \times 10^{24}$ nuclei - 1 kg of deuterium has $500 \mathrm{~mol} / 3.01 \times 10^{26}$ nuclei / 1.50×10^{26} 'reactions' - $200 \mathrm{MeV}=3.2 \times 10^{-11} \mathrm{~J}$ - $4 \mathrm{MeV}=6.4 \times 10^{-13} \mathrm{~J}$ - Uranium: $\sim 10^{14}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right)\left(\right.$ actual value $\left.8.2 \times 10^{13}\right)$ - Deuterium: $\sim 10^{14}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right)\left(\right.$ actual value $\left.9.6 \times 10^{13}\right)$ - The energy per kg is roughly the same Examiner's Comments This is the second LoR question. This is designed to assess knowledge of the two nuclear energy reactions and to calculate energy release using some given data. The differences between the fission and fusion reactions were generally well answered although many candidates explained differences in design, operation and waste more than the reactions. The similarities were often not as clear however several candidates gave excellent responses in terms of binding energies and mass differences. Candidates were also expected to complete a calculation to show which produces more energy output per kilogram. This is challenging calculation to follow through fully, but most candidates were able to make some attempt, even if it was only converting MeV to J . Only better candidates realised 2 nuclei of deuterium were used for one fusion reaction. While a small number of candidates did correctly calculate the energy per kilogram, they tended to state that fusion produced more energy rather than a feeling that they are basically equivalent. As usual with LoR questions, a holistic approach is taken to the marking and candidates can access higher levels without necessarily reaching all the marking points. Even so, relatively few candidates were able to access Level 3, generally due to poor calculations and/or descriptions.
	Total	6	
5	$(\text { force }=) \frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \epsilon_{0} \times\left(1.0 \times 10^{-15}\right)^{2}}$ $\begin{aligned} & (F=) 230(\mathrm{~N}) \\ & F^{2}=230^{2}+230^{2}-2 \times 230 \times 230 \times \cos 120^{\circ} \end{aligned}$	C1 C1 C1	Special case: $F=\frac{Q q}{4 \pi \epsilon_{0} r^{2}}=\frac{2 \times 1.6 \times 10^{-19}}{4 \pi \epsilon_{0} \times\left(1.0 \times 10^{-15}\right)^{2}}$ loses this C1 mark, then ECF for the rest of the marks Not the first two C1 marks for incorrect charge, then allow ECF for the final C1A1 marks Note force to 4 SF is 230.2 N Allow sine rule / scale drawing Allow this mark for $230 \cos 30^{\circ}$ or $200(\mathrm{~N})$

6.4 Nuclear and Particle Physics

		or $\begin{aligned} & F=2 \times 230 \cos 30^{\circ} \\ & F=400(\mathrm{~N}) \end{aligned}$		Allow $\pm 10(\mathrm{~N})$ if scale drawing used
	ii	F/ arrow vertical up the page	B1	Allow correct arrow direction anywhere on the figure
	iii	Strong (nuclear) force (acts on the protons) The strong (nuclear) force is attractive	B1 B1	Ignore gravitational force Allow pulls / holds (the protons) / binds (the protons) for 'attractive'
		Total	7	
5 9	i	Proton is repelled (by nucleus) (High-speed) proton can get close to (oxygen) nucleus	B1 B1	Allow 'proton can experience the strong (nuclear) force' Not 'collide / hit nucleus'
	ii	$\begin{aligned} & E=[0.25-(2.24-2.20)] \times 10^{-11}(\mathrm{~J}) \text { or } 0.21 \times \\ & 10^{-11}(\mathrm{~J}) \\ & \lambda=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{0.21 \times 10^{-11}} \quad \text { (Any } \\ & \lambda=9.5 \times 10^{-14}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow 2 marks for $6.9 \times 10^{-14} ; E=0.29 \times 10^{-11}$ used Allow 1 mark for a value correctly calculated based on any other incorrect value for $E\left(\right.$ e.g. $8(.0) \times 10^{-14}$ for $E=0.25 \times$ 10^{-11} and $5(.0) \times 10^{-13}$ for $\left.E=0.04 \times 10^{-11}\right)$
	iii	Used in PET (scans) Any one from: Used to diagnose function of organ / brain / body Detection of cancer / tumour Non-invasive / no surgery / no infection 3D (image)	M1 A1	Enter text here.
		Total	7	
6 0	i	More neutrons produced (from each fission reaction) Go on to produce further (fission) reactions / splitting (of nuclei) / energy	B1 B1	Examiner's Comments Most candidates scored 1 mark for the general idea of a chain reaction, but the important role played by the neutrons was often omitted in the descriptions. Only a small number of candidates misunderstood fission as a reaction in which the Cs and Rb nuclei themselves were responsible for triggering subsequent reactions of the uranium nuclei.

				- Omitting the 3.0\%.
		Total	8	
$\begin{aligned} & 6 \\ & 1 \end{aligned}$	i	Beta radiation would not penetrate/ would be absorbed by the lead	B1	Not gamma radiation would be stopped Ignore reference to alpha radiation Examiner's Comments Most candidates were obviously very familiar with this and gave a clear response. Credit was given for either Gradient of best fit line: - a clear comparison of $\ln N=-\mu \mathrm{d}+\ln N_{0}$ with $\mathrm{y}=\mathrm{mx}$ + c - using log rules to give $\ln \left(\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\mu \mathrm{d}}\right)=-\mu \mathrm{d}+\ln \mathrm{N}_{0}$
	ii	$\begin{aligned} & \ln N=-\mu \mathrm{d}+\ln N_{0} \text { compared to } \mathrm{y}=\mathrm{mx}+\mathrm{c} \\ & \text { (so } \mathrm{m}=-\mu \text { and } \mathrm{c}=\ln N_{0} \text {) } \end{aligned}$	B1	or $\ln N=\ln \left(N_{0} \mathrm{e}^{-\mu \mathrm{d}}\right)=\ln N_{0}-\mu \mathrm{d}$ Examiner's Comments Candidates who gained the uncertainty mark mostly used the standard method of finding half the range i.e. (In340In260)/2. However, a very common response was to calculate the fractional uncertainty in N (i.e. 40/300) rather than the absolute uncertainty in InN . This was not given without mathematical justification e.g. $\Delta(\operatorname{lnN}) \approx(\Delta N) / N$.
	iii	$\begin{aligned} & 5.70 \\ & \pm 0.14 \end{aligned}$	B1 B1	Both answers must be to 2d.p. Allow ± 0.13 not second B1 mark without correct working shown e.g. $\operatorname{In} 300-\ln 260$ or (5.83-5.56)/2 Allow $\Delta N / N(=40 / 300)$ but only if $\Delta(\ln N) \approx \Delta N / N$ is quoted Examiner's Comments The majority of candidates had no difficulty in plotting the point $(50,5.70)$ correctly. Both best and worst fit lines were usually drawn well enough, although some had very thick pencil lines and a surprising number had not been extended to the $\ln \mathrm{N}$ axis. Almost all candidates gained the mark for using a sufficiently large triangle ($\Delta \mathrm{d}>25 \mathrm{~mm}$) for calculating the gradient of their best fit line.
		Point plotted correctly to within $1 / 2$ small square	B1 B1	Ignore accuracy of length of error bar

		Best fit and worst fit line(s) drawn		ECF (ii)2 for incorrect value(s) in table ECF (ii)2 for incorrect value(s) in table Best fit line should have an equal scatter of points about the line Worst fit line should be steepest/shallowest possible line that passes through all the error bars (allow $\pm 1 / 2$ small square tolerance vertically) Examiner's Comments Most mathematically able candidates quickly obtained the result $\mu \mathrm{d} 1 / 2=\ln 2$ and then used it with their value of μ. Other candidates used a variety of (usually correct) graphical methods with Fig. 2.2.	
	v	gradient of best fit line $=(-) \mu=(-) 54\left(\mathrm{~m}^{-1}\right)$ large triangle used to determine gradient of best fit line calculation of absolute uncertainty using their values in the formula (\|wfl gradient - bfl gradient) uncertainty and value of μ to same number of $d p$	$\begin{aligned} & \text { B1 B1 } \\ & \text { B1 B1 } \end{aligned}$	Allow 51 to 56 Allow value of μ up to 4 SF ECF(ii)3 for wrongly plotted point $\Delta \mathrm{d}>25 \mathrm{~mm}$ (seen from graph or working) ECF (ii)3 for worst fit line Ignore any POT error in gradients Allow value of absolute uncertainty up to 3 SF only $\text { e.g. } 53.4 \pm 5.6 \text { or } 54 \pm 6$
		$\begin{aligned} & \mu d_{1 / 2}=\ln 2(\text { or } 0.693) \\ & d_{1 / 2}=0.013(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	ECF (ii)4 for $1 / 2$ Alternative method: $\ln \left(N_{0} / 2\right)=7.67(\mathrm{C} 1)$ then use of graph to give $d_{1 / 2}=0.013 \pm 0.001(\mathrm{~m})(\mathrm{A} 1)$	
		Total	12		
6	$\begin{array}{\|l} i \\ i \\ i \\ i \end{array}$	$\begin{aligned} & -m V_{g}=1 / 2 m v^{2} \text { or } 1 / 2 m v^{2}+m V_{g}=0 \\ & V_{g}=-G M / R=-g R \\ & v=\sqrt{ }(2 g R) \end{aligned}$	B1 B1 B1	Working must be shown	
	ii	$v=\sqrt{ }\left(2 \times 9.81 \times 6.4 \times 10^{6}\right)=11 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$	B1	allow 11(.2) $\mathrm{km} \mathrm{s}^{-1}$	
	iii	$\begin{aligned} & 1 / 2 \mathrm{mc}^{2}=3 / 2 \mathrm{kT} \text { where } \mathrm{m}=\left(\mathrm{M} / \mathrm{N}_{\mathrm{A}}\right)=6.6 \times \\ & 10^{-27} \mathrm{~kg} \end{aligned}$	B1	ecf (ii); allow m $=4 \mathrm{u}$ or $4 \times 1.67 \times 10^{-27}$	

6.4 Nuclear and Particle Physics

